Sheet No (2) Vertical Alignment

1-A 2.2% grade meets a -3.8% grade, what will be the total length of vertical curve to satisfy the stopping sight distance if the design speed is $80 \mathrm{~km} / \mathrm{hr}$.

Determine also the elevation on the curve every station if the elevation of the VPI point is (51.62 m) and its station is (220+67.5).

2- An underpass is to be constructed underneath a major highway, the underpass has the following data:

- $g_{1}=-4 \%$ and $g_{2}=5 \%$
- Design speed=90 kph
- Stopping sight distance should be achieved and $S<l$
- Level of VPT $=42.5 \mathrm{~m}$.

Design the sag vertical curve, give elevation every station and location, Find the elevation of the lowest point of the curve

3- A crest curve of 500 ft . length is used to connect between 1.7% and -1.5% grades. if the station and the elevation of the highest point are $(66+22.1)$ and 120.65 ft . respectively, calculate the elevation on the curve every 100 ft .

4- A parabolic vertical curve is constructed to connect between 2.00% and -3.00% grades. If the maximum offset between the curve and the tangent is 3.5 m .

Calculate the minimum required length of vertical curve the maximum safe speed, which can be accommodated on the curve.

Give the elevation every 50 ft . intervals on the curve if the level of VPT is (612.31 ft .)

5- If the passing sight distance on vertical must be maintained, calculate the length of the vertical curve and give the grade elevation every station, if the $g 1=-4.1 \%$ \& $g 2=-1.2 \%$, design speed $=40 \mathrm{mph}$, and the level of VPI $=(64.22)$.

6- In determining the passing sight distance for a 2-lane highway, the following data were obtained:

* Average passing speed $=64 \mathrm{mph}$.
* Preliminary delay $=4.2 \mathrm{sec}$.
* Average acceleration rate $=1.45 \mathrm{mph} / \mathrm{sec}$.
* Left lane occupancy time $=10 \mathrm{sec}$.
* Clearance length $=195 \mathrm{ft}$.

Based on the above data, design the vertical required to connect two slopes of $+4 \%$ and 2.5% respectively. If the elevation of VPI is (150.45). Determine the elevation of a point on the curve at 0.3 L from the PVC.

7- A crest vertical curve is required to connect two grades $+g 1 \%$ and $-g 2 \%$. If The design length $=800 \mathrm{ft}$. And SSD=500 ft. Determine the two grades and the safe operating speed on the curve knowing that:

Elevation of the highest point $=(42.00)$.
Elevation of VPC $=(38.00)$.
Note that :[IF $S \leq L \rightarrow L=\frac{A S^{2}}{1260} \quad \& \quad$ IF $S \geq L \rightarrow L=\frac{2 S-1260}{A}$]

8-Find the safe operating speed should maintained along the following ramp, then determine the location and elevation of the highest point.

9- The following sketch is a profile of a portion of highway having a design speed 70 kph .
It is required to design the successive vertical curves knowing that:
ㅁ $f=0.32$

- Station of PVT1= $303+15$
- Station of PVT2= $309+78$

VPI 2

